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An Ordinal Regression Model using

Dealer Satisfaction Data

Alexander Staus

Abstract

This article analyses dealer satisfaction data in the agricultural technology market

in Germany. The dealers could rate their suppliers in the ’overall satisfaction’ and in

38 questions which can be summarized in 8 dimensions. An ordinal regression model

which is also known as the proportional odds model is used to analyse the ordinal

scaled rating of the dealers. The ordinal regression model is a well examined method

in econometric theory, but many authors prefer using a linear regression model due

to better interpretation, even the assumptions of a linear regression do not fit the

data. Since the estimated coefficients of an ordinal regression model can not be

properly interpreted we show other methods for a better insight of the relationship

of the dealer satisfaction and the influencing variables. These methods are easy to

use and it is recommended to list some of them in empirical papers.
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1 Introduction

In the last three decades researchers detected the importance of dealer satisfaction in the subject

of vertical marketing. Most articles have not a theoretical but rather an empirical point of view.

For a review see (Decker, 2000) and the literature cited there. Franchise systems (Hempelmann

and Grunwald, 2003) and the car industry (Meinig, 1995) and (Decker, 2000) are areas where

many empirical studies appeared. Usually there is a list of many questions directed to the deal-

ers about their suppliers. The dealers can rate their suppliers in some categories from “very

bad” to “very good”. The questions get summarized in a few dimensions. Most empirical studies

have a pure descriptive character with computing means and range over the questions or/and

dimensions. Some extend this with a discriminant analysis (e.g. Meffert et al., 1996) or a factor

analysis (e.g Heß, 1994) to assign some dealer-specific variables to the dimensions or respectively

to reduce the dimensions to a number up to 3 or 4.

The rating scale in the questionnaire may be treated as ordinal. An ordinal variable has cate-

gories which can be ranked but the distance is not interpretable. Grades e.g. can have categories

from 1 to 5, but 1 is not double as good as 2. Ordinal variables are often found in questionnaires

for rating the most different facts. Rating the taste of food from “excellent” to “very bad” or the

importance of fresh air from “very important” to “not at all” are further examples for an ordinal

classification. For analysing ordinal scaled data we can recode the answers into numbers from 0

or 1 to the number of categories.

Using a linear regression model (LRM) for analysing dependent ordinal variables violates the

assumptions of the LRM (McKelvey and Zavoina, 1975). For handling ordinal outcomes it is

much better to use models that avoid the assumption that the distances between categories are

equal (Long and Freese, 2003). Winship and Mare (1984) summarize that there are researchers

who treat ordinal variables as if they were continuous and use regression, LISREL or other

multivariate methods, because the power and flexibility of these models outweigh the small

biases that may occur. Many authors prefer using an ordinal regression for ordinal data (e.g.

Ananth and Kleinbaum, 1997; Armstrong and Sloan, 1989; Conner-Spady et al., 2004; Enneking

et al., 2007; Guisan and Harrell, 2000; Hedeker and Gibbons, 1994; Lall et al., 2002; Lu, 1999;

Sun et al., 2000), some of them compare different ordinal models with each other or with non-

ordinal models. Long (1997) points out, that researchers have to think carefully before using

methods for an ordinal outcome. The possibility of ordering a variable does not mean that

the ordering makes sense in any case. McCullagh and Nelder (1983) show that colors can be
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arranged according to the electromagnetic spectrum. So if consumers buy a car and prefer a

particular color, there is usually not a relation to the arranged colors of the electromagnetic

spectrum, but it’s rather a matter of taste.

This article deals with the dealer satisfaction of agricultural technology in Germany. Our purpose

is to give an overview about the status of the dealer satisfaction and to show which dimensions

influence the overall satisfaction of the dealers most. Many articles dealing with an ordinal

regression (cited above) don’t give a proper interpretation of the estimated coefficients or even

don’t list the odds ratios. Therefore we give an illustration with graphical and tabulation tools

to interpret the results of an ordinal regression properly.

The paper is organized as follows. In section 2 there is an overview of the dataset and some

descriptive statistics. In section 3 we give an introduction to the latent variable logit form of

the ordinal regression model (ORM), also known as the proportional odds model, which was

first presented by McKelvey and Zavoina (1975). In section 4 we interpret the empirical results

of the ordinal regression with different tools and a conclusion is given in section 5.

2 Data

A questionnaire directed to dealers of agricultural technology was printed in the 11th edition

in the eilbote (eilbote, 2006). Additionally the questionnaire was sent per mail to this group of

dealers. 250 dealers of agricultural technology replied.1 The dealers could rate their suppliers

on a scale from 0 (very bad) to 10 (very good) in the ’overall satisfaction’ and in 38 questions

which can be summarized in the following 8 dimensions:

• product program (4 questions)

• design of the conditions of purchase (3 questions)

• marketing and consumer promotion (8 questions)

• after sales methods and service methods (4 questions)

• support in the garage and at service (10 questions)

• support for second-hand promotions (2 questions)

• future of competition (3 questions)

• relationship to the supplier (4 questions)

1The dealers named in total 19 different suppliers.
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Additionally dealer-specific questions like the number of employees, number of sites, age of the

dealer company or duration of cooperation with the supplier were asked. The dealers could rate

five different product groups like tractors, combine harvesters, forage harvesters etc. The ratings

for the different product groups were very similar, so we pooled all five groups together.

Even if an ORM is appropriate for a rating scale form 0 to 10, it is difficult to interpret the

results. Franses and Cramer (2002) point out that a researcher can always reduce the number of

outcome categories for practical considerations, but that there is no statistical test that might

support this decision. Therefore we rescale the rating for all questions without effecting the

main findings. We rescaled ratings from 0 to 5 into 1, 6 and 7 into 2, 7 and 8 into 3 and 9 to

10 into 4. For a quick overview of the data Table 1 gives some summary statistics about the

’overall satisfaction’ and the 8 dimensions.

Table 1: Summary statistics (n=247)

Variable Mean Std. Dev.
overall satisfaction 2.49 1.12
product program 2.73 0.98
design of the conditions of purchase 2.29 1.12
marketing and consumer promotion 2.44 1.10
after sales methods and service methods 2.05 1.08
support in the garage and at service 2.48 1.03
support for second-hand promotions 1.53 0.92
future of competition 2.74 1.13
relationship to the supplier 2.41 1.16
number of sites 2.16 2.74
total number of employees 27.62 34.26
age of the dealer company 52.18 39.81
duration of cooperation with supplier 23.92 18.28

The highest rating gets ’future of competition’ (2.74) followed by ’product program’ (2.73), the

lowest rating ’support for second-hand promotions’ (1.53) is far worse rated than the second

lowest ’after sales methods and service methods’ (2.05). The mean of ’overall satisfaction’ is

2.49. In average a dealer company has 12.8 employees per site and is around 52 years old. The

dealers of Eastern Germany rate their suppliers a bit better (2.61) than their western competitors

(2.41).
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3 Model Specification and Estimation

3.1 Model and Estimation

The latent variable logit form, which was first introduced by McKelvey and Zavoina (1975) is

used for the analysis of the data. We define a latent variable y∗ ranging from −∞ to +∞ and

divide the space into J ordinal categories. The number of categories J of the latent variable is

equivalent to the different values of the actual variable y, the ’overall satisfaction’. We get the

structural model for one independent variable

y∗i = α + βxi + εi, i = 1, ..., N (1)

where xi is an independent variable for the ith observation, α is the intercept, β is the slope

coefficient and εi is the error term. The mth outcome of the actual variable y lies between two

cut-points of the latent y∗:

yi = m if τm−1 ≤ y∗i < τm for m = 1, ..., J,

where τm−1 is the lower limit and τm is the upper limit of the latent y∗. To illustrate the

relationship between the latent variable y∗ and the ’overall satisfaction’ y see Figure 1.

Figure 1: The latent variable y∗ and the observed categories in y

Source: Long (1997), p. 117

Now we assume that y∗ follows a particular probability distribution with density function f(y∗)

and cumulative density function F (y∗). The probability that y = m is the area under the density

curve f(y) between τm−1 and τm (Winship and Mare, 1984).

To get the general form of equation (1) with K independent variables for N observations we

write:

y∗ = Xβ + ε (2)

where y∗ is a (N × 1) vector for the dependent variable, X is a (N × (K + 1)) matrix of the K

explanatory variables and a unit vector in the first column for the intercept, β is a ((K +1)×1)

column coefficient vector including the intercept as the first element and ε is a (N × 1) vector

of the error term.
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In case of the latent variable logit form of the ordinal regression model the error term ε follows

a logistic distribution with mean 0 and variance π2/3. The probability distribution function is

λ(ε) =
exp(ε)

(1 + exp(ε))2

and the cumulative distribution function is

Λ(ε) =
exp(ε)

1 + exp(ε)
.

The probability that the ’overall satisfaction’ takes one specific value y = m of the J categories

for given variables x is

Pr(yi = m|xi) = Pr(τm−1 ≤ y∗i < τm|xi),

where xi is a vector of all the independent variables for individual i.

We can substitute xiβ + εi for y∗ and get

Pr(yi = m|xi) = Pr(τm−1 ≤ xiβ + εi < τm|xi)

This leads to

Pr(yi = m|xi) = Pr(εi < τm − xiβ|xi)− Pr(εi ≤ τm−1 − xiβ|xi)

= F (τm − xiβ)− F (τm−1 − xiβ), (3)

which is in our case for the logistic cumulative distribution function

Pr(yi = m|xi) =
exp(τm − xiβ)

1 + exp(τm − xiβ)
− exp(τm−1 − xiβ)

1 + exp(τm−1 − xiβ)
.

The formulas of interest for J categories are

Pr(yi = 1|xi) = Λ(τ1 − xiβ)

Pr(yi = 2|xi) = Λ(τ2 − xiβ)− Λ(τ1 − xiβ)
...

Pr(yi = J − 1|xi) = Λ(τJ−1 − xiβ)− Λ(τJ−2 − xiβ)

Pr(yi = J |xi) = 1− Λ(τJ−1 − xiβ),

since F (τ0 − xiβ) = F (−∞ − xiβ) = 0 and F (τJ − xiβ) = F (∞− xiβ) = 1. For our dealer

satisfaction analysis the number of categories J is four and our independent variables in x are

the eight dimensions and the dealer specific variables:
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overall satisfaction = β1 × product program + β2 × design of the conditions of purchase
+ β3 ×marketing and consumer promotion
+ β4 × after sales methods and service methods
+ β5 × support in the garage and at service
+ β6 × support for second-hand promotions
+ β7 × future of competition
+ β8 × relationship to the supplier
+ β9 × number of sites
+ β10 × total number of employees
+ β11 × age of the dealer company
+ β12 × duration of cooperation with the supplier

There are two different assumptions which are usually used to identify the model. We can either

set the intercept α to 0 or we assume that the cut-point τ1 is 0.2 The assumptions don’t affect

the estimation of the β’s. Our data get analysed with Stata which sets the intercept to 0.

The coefficients β and cut-points τ are estimated using maximum likelihood. The likelihood

function is

L =
N∏

i=1

J∏

m=1

Pr(yi = m|xi)dim ,

where dim equals one if dealer i rates the overall satisfaction with category m (yi = m) and

zero otherwise. Numerical methods have to be used to maximize the likelihood function to

estimate the β’s and τ ’s. Stata uses the Newton-Raphson method. Pratt (1981) shows that

Newton-Raphson converges to a global maximum. The estimates are consistent and asymptot-

ically efficient.

3.2 Parallel Regression Assumption

Using an ORM implies to accept that the coefficients of all categories m are equal. This is

known as the proportional odds assumption but rather obvious if we think of parallel regression

lines. We can rewrite equation 3 to

Pr(yi ≤ m|xi) = F (τm − xiβ) for m = 1, ...J − 1. (4)

Equation 4 shows that our ordered regression model can be split into J − 1 binary regressions

with responses in each case less or equal m and greater than m. If we do that for m = 1, .., J−1

2Long (1997) gives a short explanation about identifying the model.

6



the β’s must be the same for every category m while the cut-points can differ. Figure 2 illustrates

this assumption.

Figure 2: Parallel regression lines
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Source: Long (1997), p. 141

While τm differs for different m (shifting the probability curves to the left or to the right), the

slope of the curves are the same for every category m. The assumption can be tested by J − 1

binary regressions to get β1, β2, ..., βJ−1 from every single regression. The β’s in the binary

regressions can differ from each other, but if the parallel regression assumption holds, β1 to

βJ−1 have to be very close to each other.

Wolfe and Gould (1998) developed a likelihood ratio test to examine the slope coefficients for

all variables at the same time. Brant (1990) constructed a Wald test to test the coefficients for

each individual variable.

4 Empirical Results

First we can conclude that all the dealer-specific variables don’t affect the ’overall satisfaction’.

So the total number of employees, the age of the dealer company, the duration of cooperation

with the supplier and the number of sites have no significant influence. Table 2 shows the

estimation results of the ordinal regression. Model (1) includes the significant variables of the

eight dimensions. The estimated coefficients show that the ’product program’ has the highest

impact to the ’overall satisfaction’, followed by ’marketing and consumer promotion’ and ’after

sales and service methods’. We carried out a LRM (see Model (2) in Table 2), just to show the

different results between the two models, although the assumptions of a LRM don’t fit the data.
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In the regression model the significance of ’after sales and service methods’ disappears, while

the other dimensions are still relevant. Additionally, ’age of the dealer company’ is significant

for the ’overall satisfaction’. These small differences show that the results of a regression model

with a ordinal scaled dependent variable have to be used with caution.

McKelvey and Zavoina’s R2 for the ORM is about 0.613. Hagle and Mitchell (1992) concluded

that McKelvey and Zavoina’s R2 is a good estimate of the OLS R2. It is relatively unbiased

and has together with the corrected Aldrich-Nelson pseudo-R2 the smallest variances from the

OLS R2. Further they point out that the pseudo-R2 can’t be seen as a OLS-R2 and therefore

misinterpretation is possible and it should be used carefully. So our high R2 of McKelvey and

Zavoina’s should not be overvalued. Both, Wolfe and Gould’s likelihood ratio test (χ2
6 = 6.19)

and Brant’s Wald test (χ2
6 = 5.92) support the assumption of parallel regression lines, so the

analysis with an ORM is appropriate. But how to interpret the results of the ORM?

4.1 Estimated coefficients

The easiest but most meaningless way is to interpret the coefficients as they are got estimated

in Table 2 with equation (2). Of course the difference of the strength the dimensions effect

the ’overall satisfaction’ is seen, but more interpretation is not pssible. The “latent” dependent

variable increases by the according estimated β for a one unit increase by the according exoge-

nous variable. This doesn’t tell us much, because the actual 4 categories got spanned over the

whole space between −∞ and +∞ as they were continuous and it’s not possible to see the real

categories behind that.

4.2 Log odds ratios

Another way is to interpret the log of the odds:

ln
Pr(y ≤ 1|x)
Pr(y > 1|x)

= τ1 − xβ = 4.192− 1.269x1 − 0.875x3 − 0.293x4

ln
Pr(y ≤ 2|x)
Pr(y > 2|x)

= τ2 − xβ = 6.020− 1.269x1 − 0.875x3 − 0.293x4 (5)

ln
Pr(y ≤ 3|x)
Pr(y > 3|x)

= τ3 − xβ = 8.433− 1.269x1 − 0.875x3 − 0.293x4.

On the left hand side of the equations we don’t have the latent variable, but rather the log of

the ratio of two different categories of the ’overall satisfaction’. There is no transformation of

the coefficients necessary, but the interpretation is as meaningless as for equation (2). Due to
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Table 2: Estimation results : Ordinal Regression

ORM LRM

(1) (2)

product program 1.269∗∗∗ 0.467∗∗∗

(0.209) (0.070)

marketing and consumer promotion 0.875∗∗∗ 0.365∗∗∗

(0.197) (0.71)

after sales and service methods 0.293∗ 0.086

(0.173) (0.063)

age of the dealer company 0.002∗

(0.001)

τ1 4.192∗∗∗

(0.472)

τ2 6.020∗∗∗

(0.547)

τ3 8.433∗∗∗

(0.695)

Observations 245 237

McFadden’s R2 (ORM), Adj. R2 (LRM) 0.311 0.593

McKelvey and Zavoina’s R2 0.613

Log-likelihood -233.841 -255.407

χ2 210.644 217.027

Notes: Standard errors in parentheses.
Significance levels : ∗ : 10% ∗∗ : 5% ∗ ∗ ∗ : 1%
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the higher estimated coefficient for the ’product program’ (= x1) an increase by one unit in that

rating dimension lets the log odds decrease more than an increase in ’marketing and consumer

promotion’ (= x3). It may be confusing that a higher β leads to more decreasing log odds, but

decreasing log odds change the probability in favour of the denominator, for a higher category

(e.g. from 1 to 2). The change in the log odds itself is very hard to interpret.

4.3 Odds ratios

Instead of the log odds we can use the odds. They look very similar to the array of equations

in 5:

Pr(y ≤ 1|x)
Pr(y > 1|x)

= exp(τ1 − xβ) = exp(4.192− 1.269x1 − 0.875x3 − 0.293x4) (6)

... =
...

...

To get this array we just exponentiated the equations in 5. The interpretation is as follows.

For a one unit change in e.g. x1, the rating of the ’product program’, the odds of an outcome

being higher than m versus being lower or equal to m is exp(β1) = 3.56, given all of the other

dimensions in the model are held constant. But why does exp(βk) explain an increase of the

reciprocal of the odds? Let us focus on the odds for category 1. Let

Ω(x1, x2, x3) =
Pr(y ≤ 1|x1, x2, x3)
Pr(y > 1|x1, x2, x3)

= exp(τ1 − β1x1 − β2x2 − β3x3) and

Ω(x1 + 1, x2, x3) =
Pr(y ≤ 1|x1 + 1, x2, x3)
Pr(y > 1|x1 + 1, x2, x3)

= exp(τ1 − β1(x1 + 1)− β2x2 − β3x3).

For a change of x1 by 1 the odds become

Ω(x1 + 1, x2, x3)
Ω(x1, x2, x3)

=
exp(τ1 − β1(x1 + 1)− β2x2 − β3x3)

exp(τ1 − β1x1 − β2x2 − β3x3)
=

1
exp(β1)

.

While 1
eβ1

is the factor the odds of a lower or equal outcome (m ≤ 1) versus a higher outcome

(m > 1) changes, eβ1 is the rate the reciprocal of the standard odds has to be multiplied.

What does the exponent of the estimated coefficient tell us? If Pr(y>1|x1=2,x2,x3)
Pr(y≤1|x1=2,x2,x3) equals one

for a ’product program’ rating of two, the probability for a higher category than 1 versus the

probability the category is less or equal to 1 are both 50 %. Let us now assume that the rating

of the ’product program’ rises up to three, the other categories are held constant. In that case

the odds change from 1 to 3.557 due to the estimated coefficient of exp(β1) = 3.557, that means
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the probability for a higher category than 1 increases to 78% versus the probability of 22% for

a category less or equal to 1. Table 3 shows the odds ratios exp(x) and the percentage changes

of the significant dimensions for Model (1).

Table 3: Odds ratios and percentage changes of the ORM

Variable β eβ percentage change

product program 1.269 3.557 255.7

marketing and consumer promotion 0.875 2.399 139.9

after sales and service methods 0.293 1.341 34.1

4.4 Tables of predicted probabilities

Instead of interpreting the coefficients or a modification, we can tabulate the predicted proba-

bilities for every single category of the ’overall satisfaction’. This can be done by either choosing

some for the researcher relevant combinations of some of the variables or by complete tabulation

for all variables and all values. The predicted probabilities can be obtained by calculating equa-

tion 3 for every category of the ’overall satisfaction’. Table 4-7 list all predicted probabilities for

combinations of “product program vs. marketing and consumer production”, “product program

vs. after sales and service methods” and “after sales and service methods vs. marketing and

consumer production” for all categories of the ’overall satisfaction’.

Table 4: Predicted probability of ’overall satisfaction’ for category 1

marketing and consumer production after sales and service methods
product program 1 2 3 4 1 2 3 4

1 0.8092 0.6387 0.4243 0.2350 0.6219 0.5509 0.4778 0.4056
2 0.5439 0.3320 0.1716 0.0795 0.3162 0.2565 0.2046 0.1610
3 0.2511 0.1226 0.0550 0.0237 0.1151 0.0884 0.0674 0.0512
4 0.0861 0.0378 0.0161 0.0068 0.0353 0.0265 0.0199 0.0149

after sales and
service methods 1 2 3 4

1 0.3915 0.2115 0.1005 0.0445
2 0.3243 0.1667 0.0770 0.0336
3 0.2636 0.1298 0.0585 0.0253
4 0.2107 0.1001 0.0443 0.0190

It can be easily seen by the predicted probabilities that the ’product program’ influences the

overall satisfaction most. For a better illustration we compare the range of the predicted prob-

abilities in the extreme categories 1 and 4. The range of the ’product program’ for the ’overall

satisfaction’ outcome of 1 varies from 80.92 % for rating into category 1 to 8.61 % for rating

11



Table 5: Predicted probability of ’overall satisfaction’ for category 2

marketing and consumer production after sales and service methods
product program 1 2 3 4 1 2 3 4

1 0.1543 0.2779 0.3966 0.4214 0.2891 0.3332 0.3727 0.4037
2 0.3373 0.4236 0.3914 0.2699 0.4258 0.4256 0.4108 0.3831
3 0.4248 0.3424 0.2109 0.1075 0.3320 0.2878 0.2428 0.2000
4 0.2834 0.1586 0.0763 0.0340 0.1500 0.1184 0.0923 0.0713

after sales and
service methods 1 2 3 4

1 0.4086 0.4137 0.3096 0.1802
2 0.4248 0.3877 0.2645 0.1441
3 0.4264 0.3515 0.2203 0.1136
4 0.4134 0.3089 0.1796 0.0884

Table 6: Predicted probability of ’overall satisfaction’ for category 3

marketing and consumer production after sales and service methods
product program 1 2 3 4 1 2 3 4

1 0.0331 0.0753 0.1599 0.2988 0.0804 0.1043 0.1340 0.1700
2 0.1069 0.2163 0.3720 0.5077 0.2278 0.2779 0.3316 0.3861
3 0.5077 0.4416 0.5359 0.4965 0.4532 0.4945 0.5237 0.5381
4 0.4979 0.5354 0.4397 0.2809 0.5322 0.5094 0.4732 0.4268

after sales and
service methods 1 2 3 4

1 0.1781 0.3239 0.4758 0.4758
2 0.2218 0.3785 0.5113 0.5293
3 0.2713 0.4307 0.5331 0.5041
4 0.3247 0.4764 0.5392 0.4658

Table 7: Predicted probability of ’overall satisfaction’ for category 4

marketing and consumer production after sales and service methods
product program 1 2 3 4 1 2 3 4

1 0.0034 0.0081 0.0192 0.0448 0.0087 0.0087 0.0155 0.0207
2 0.0119 0.0282 0.0650 0.1429 0.0302 0.0401 0.0530 0.0698
3 0.0412 0.0934 0.1982 0.3722 0.2826 0.1293 0.1660 0.2107
4 0.1325 0.2682 0.4678 0.6784 0.2826 0.3456 0.4145 0.4870

after sales and
service methods 1 2 3 4

1 0.0219 0.0510 0.1141 0.2361
2 0.0291 0.0672 0.1473 0.2929
3 0.0387 0.0880 0.1880 0.3571
4 0.0512 0.1146 0.2369 0.4269
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into category 4 (range= 72.31 %). ’After sales and service methods’ is set to the average value

of 2.05 and marketing and consumer production is set to 1. The ranges of the other dimensions

are 57.42 % for ’marketing and consumer production’ and 21.63 % for ’after sales and service

methods’. The same can be done for other values of dimensions and for other values of the

’overall satisfaction’ (see Tables 4-7).
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4.5 Graphics of predicted probabilities

While tables are messy to read, graphics demonstrate the relationship of the variables and the

predicted probabilities more obviously. Figure 3 compares the ’product program’ at the top of

the figure and ’after sales and service methods’ below.3 The other dimensions in the Figure

are set respectively to 1.4 The slope of ’after sales and service methods’ declines very slowly

for an ’overall satisfaction’ outcome of 1 compared with the slope of the ’product program’.

That means that the ’after sales and service methods’ have less influence for increasing rating

of the dimension to the change of the probability of the ’overall satisfaction’ than the ’product

program’.

Figure 4 compares the two dimensions cited above with other dimensions respectively set to 4.

In this case it is most obvious to compare the graphs for an ’overall satisfaction’ outcome of

4. The ’product program’ increases much faster for increasing rating than the ’after sales and

service methods’.

3The comparison is best seen with these two dimensions, because of the higher difference of the effects on the

’overall satisfaction’.
4For ’product program’ the other two significant dimensions ’after sales and service methods’ and ’marketing

and consumer production’ are set to 1. For ’after sales and service methods’ the dimensions ’product program’

and ’marketing and consumer production’ are set to 1.
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Figure 3: Predicted probabilities of ’overall satisfaction’ with other significant variables set to 1.
At the top: ’product program’. At the bottom: ’after sales and service methods’.
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Figure 4: Predicted probabilities of ’overall satisfaction’ with other significant variables set to 4.
At the top: ’product program’. At the bottom: ’after sales and service methods’..
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5 Conclusion

We performed an ordinal regression model using dealer satisfaction data for the agricultural

technology market in Germany. The model deals with a ordinal scaled rating between 0 and 10,

summarized, without effecting the main results, to a rating between 1 to 4. The significant di-

mensions for influencing the ’overall satisfaction’ are the ’product program’, the ’marketing and

consumer production’ and the ’after sales and service methods’. With a linear regression model

for ordinal scaled variables, the results can be misleading and have to be used with caution. Many

articles using an ORM list just the estimated coefficients and/or don’t proof the assumption of

parallel regression lines. But the estimated coefficients of the ORM can’t be properly interpreted

like in the LRM, because of the estimation of a latent variable, so further calculations have to be

carried out. To present the log odds is as meaningless as the estimated coefficients themselves.

Beginning with the odds or the percentage change of the odds is the first way for a better un-

derstanding of the relationship of the significant variables. But still they give only an overview,

independently of the other dimensions. With predicted probabilities either for some interesting

combinations of values of the explanatory variables or for all possible combinations this problem

can be dealed with. The tables are hard to read and even more difficult with a dependent

variable with more than 4 categories. Therefore we can illustrate the predicted probabilities by

graphs. Within this method it is easy to see by the slope for the according category how much

the probability changes with different values of the independent variable. So the odds, the tables

and graphs of the predicted probabilities give much more insight into the relationship between

the variables. We hope that researcher using an ORM will provide a better interpretation of the

empirical study by using the possible techniques instead of listing just the estimated coefficients.
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